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1 Introduction

The AdS/CFT correspondence is a powerful tool to study different properties of strongly

coupled gauge theory in terms of dual (super) gravity theory in AdS space. In low fre-

quency limit the boundary field theory can be described by hydrodynamics. In this limit

different transport coefficients like shear viscosity, diffusion constant, thermal and electri-

cal conductivity of strongly coupled boundary fluid have been computed in the context of

AdS/CFT (see [1]–[31]).

In [1], the authors evaluated the shear viscosity coefficient of boundary fluid using Kubo

formula. This formula relates the shear viscosity to two point function of energy momentum

tensor in zero frequency limit. On the other hand from field operator correspondence of
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the AdS/CFT conjecture we know that energy momentum tensor of boundary field theory

is sourced by bulk graviton excitations. Therefore in the context of AdS/CFT, to calculate

thermal two point correlation function of field theory energy momentum tensor we need

to add small perturbations to the bulk metric. In [1], the authors considered graviton

excitations polarized parallel to the black brane (i.e., xy components are turned on) and

moving transverse to it. When one sends the gravitons to the brane, there is a probability

that it will be absorbed by the brane. They calculated the absorption coefficient and showed

that it is related to two point functions of energy momentum tensor of boundary fluid.

To calculate the absorption coefficients, one needs to solve the wave equation for trans-

verse gravitons. In presence of any higher derivative terms in the bulk action the solution

may be technically difficult in general [32–34]. Recently there is a proposal that the shear

viscosity of strongly coupled boundary gauge theory plasma is related to the effective cou-

pling of graviton calculated at the black hole horizon [35, 36]. In [37], using the membrane

paradigm, the authors have confirmed that at the level of linear response the low frequency

limit of strongly coupled boundary field theory at finite temperature is determined by the

horizon geometry of its gravity dual. They have proved that generic boundary theory

transport coefficients can be expressed in terms of geometric quantities evaluated at the

horizon.1 In particular, they have found that the shear viscosity coefficient is given by the

transverse graviton coupling computed at the horizon. The novelty of this result is that

one does not need to solve the equation of motion for the graviton to calculate the thermal

Green function. From graviton’s action one can easily read off the coupling constant and

hence determine the shear viscosity coefficient.

To find the effective coupling of gravitons one has to find the general action. This

can be achieved in the following way. Consider the Einstein-Hilbert action with negative

cosmological constant

I =
1

16πG5

∫

d5x
√−g (R + 12) . (1.1)

The equation of motion obtained from this action has a black hole solution. We denote

this background solution by g
(0)
µν . Now we consider fluctuation about this spacetime in xy

(for example) direction,2

gxy = g(0)
xy + ǫ hxy(r, x) = g(0)

xy (1 + ǫ Φ(r, x)) . (1.2)

Then substituting the metric with fluctuation in the action (1.1) and keeping terms up to

order ǫ2 we get the action for graviton. The form of this action is,

S ∼ 1

16πG5

∫

d4k

(2π)4
dr
(

a(r)φ′(r, k)φ′(r,−k) + b(r)φ(r, k)φ(r,−k)
)

(1.3)

where,

φ(r, k) =

∫

d4x

(2π)4
e−ik.xΦ(r, x) , (1.4)

1See [38] also.
2Notations: x denotes the boundary coordinates. x = {t, ~x}.
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k = {−ω,~k} and ‘ ′ ’ denotes derivative with respect to r. The effective coupling is related

to the coefficient of φ
′2 i.e., a (we have reviewed this calculation in section 2).

This gives the correct viscosity coefficient for the Einstein-Hilbert gravity. But it is

not obvious how to generalize this approach for higher derivative case. The proof given

in [37] was based on the canonical form (1.3) of graviton’s action. In presence of arbitrary

higher derivative terms in the bulk, the general action for the perturbation hxy does not

have the above form (1.3). Rather it will have more than two derivative (with respect to r)

terms. [37, 39] have considered Gauss-Bonnet term in the bulk action. In general, presence

of RabR
ab and RabcdR

abcd terms in the bulk result terms like φ
′′2 and φ′φ′′ in the action for

hxy. For Gauss-Bonnet combinations these terms get canceled and the general action still

has the form (1.3).

In this paper we have considered generic higher derivatives terms in the bulk La-

grangian. We have given a procedure to construct an effective action Seff for transverse

graviton of the form (1.3) in presence of any higher derivative terms in the bulk. The

details of the construction is given in section (3). Our construction ensures that in low

frequency limit, the calculations of retarded Green function (imaginary part) using either

effective action or original action are same. Therefore following the similar argument given

in [37], we can relate the shear viscosity coefficient of the boundary fluid with the horizon

value of the effective coupling obtained from Seff (section 4). In section (5) we have also

discussed how membrane fluid captures the properties of boundary fluid in low frequency

limit in generic higher derivative gravity. We have checked our procedure for two cases:

• General four derivative terms, (section (6))

• Weyl4 term which arises in type II string theory (section (7)).

In both examples we get exact agreement between our results and the results that already

exist in the literature [33, 34, 40]. Hence we conclude that:

The shear viscosity coefficient of the boundary fluid is given by the horizon value

of the effective coupling of transverse graviton obtained from its effective action

in presence of arbitrary higher derivative terms in the bulk.

2 Shear viscosity from effective coupling

In this section we briefly review how to calculate the shear viscosity coefficient of the

boundary fluid from the effective coupling constant of transverse graviton in Einstein-

Hilbert gravity.

We first fix the background spacetime. We start with the following Einstein-Hilbert

action in AdS space.

I =
1

16πG5

∫

d5x
√−g (R + 12) . (2.1)
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Here we have taken the radius of the AdS space 1. The background spacetime is given by

the following metric3

ds2 = −ht(r)dt2 +
dr2

hr(r)
+

1

r
d~x2 (2.2)

where,

ht(r) =
1 − r2

r
. (2.3)

and

hr(r) = 4r2(1 − r2) . (2.4)

The black hole has horizon at r0 = 1 and the temperature of this black hole is given by,

T =
1

π
. (2.5)

We consider the following metric perturbation,

gxy = g(0)
xy + hxy(r, x) = g(0)

xy (1 + ǫΦ(r, x)) (2.6)

where ǫ is an order counting parameter. We consider terms up to order ǫ2 in the action of

Φ(r, x). The action (in momentum space) is given by,

S =
1

16πG5

∫

dωd3~k

(2π)4
dr

[

A1,1(r)φ
′(r,−k)φ′(r, k) (2.7)

+A1,0(r, k)φ(r,−k)φ′(r, k) + A0.0(r, k)φ(r, k)φ(r,−k)

]

where, Ai,j(r, k) are functions of r and k and φ(r, k) is given by (1.4). Up to some total

derivative the action (2.7) can be written as footnoteThough throughout this paper we

have written the four vector k, but in practice we have worked in ~k → 0 limit. In all the

expressions we have dropped the terms proportional to ~k or its power.

S =
1

16πG5

∫

dωd3~k

(2π)4
dr
(

A(0)
1 (r)φ′(r,−k)φ′(r, k) + A(0)

0 (r, k)φ(r, k)φ(r,−k)
)

(2.8)

where,

A(0)
1 (r) =

r2 − 1

r
(2.9)

and

A(0)
0 (r, k) =

ω2

4r2(1 − r2)
. (2.10)

This can be viewed as an action for minimally coupled scalar field φ(r, k) with effective

coupling given by,

Keff(r) =
1

16πG5

A(0)
1 (r)

√

−g(0)grr

=
1

16πG5

(

−1

2

)

. (2.11)

3We are working in a coordinate frame where asymptotic boundary is at r → 0.

– 4 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
6

Therefore according to [37, 39] the effective coupling Keff calculated at the horizon r0 gives

the shear viscosity coefficient of boundary fluid,

η = r
− 3

2
0 (−2Keff(r0))

=
1

16πG5
. (2.12)

Therefore shear viscosity to entropy density ratio is given by,

η

s
=

1

4π
. (2.13)

The universality of this result is an artifact of the universality of the transverse graviton’s

effective coupling (2.11) in two derivative gravity.

3 The effective action

Having understood the above procedure to determine the shear viscosity coefficient from

the effective coupling of transverse graviton it is tempting to generalize this method for any

higher derivative gravity. As we discussed in the introduction, the first problem one faces

is that the action for transverse graviton no more has the canonical form (2.7). For generic

’n’ derivative gravity theory the action can have terms with (and up to) ‘n’ derivatives

of Φ(r, x). Therefore, from that action it is not very clear how to determine the effective

coupling. In this section we try to address this issue.

We construct an effective action which is of form (2.8) with different coefficients cap-

turing higher derivative effects. We determine these two coefficients by claiming that the

equation of motion for φ(r, k) coming from these two actions (general action and effective

action) are same up to first order in perturbation expansion (in coefficient of higher deriva-

tive term). Once we determine the effective action for transverse graviton in canonical form

then we can extract the effective coupling from the coefficient of φ′(r, k)φ′(r,−k) term in

the action. Needless to say, our method is perturbatively correct.

3.1 The general action and equation of motion

Let us start with a generic ’n’ derivative term in the action with coefficient µ. We study

this system perturbatively and all our expressions are valid up to order µ. The action is

given by,

S =
1

16πG5

∫

d5x
(

R + 12 + µ R(n)
)

(3.1)

where, R(n) is any n derivative Lagrangian. The metric in general is given by (assuming

planar symmetry),

ds2 = −(ht(r) + µ h
(n)
t (r))dt2 +

dr2

hr(r) + µ h
(n)
t (r)

+
1

r
(1 + µ h(n)

s (r))d~x2 (3.2)

where h
(n)
t , h

(n)
r and h

(n)
s are higher derivative corrections to the metric.
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Substituting the background metric with fluctuations in the action (3.1) (we call it

general action or original action) for the scalar field φ(r, k) we get,

S =
1

16πG5

∫

d4k

(2π)4
dr

n
∑

p,q=0

Ap,q(r, k)φ(p)(r,−k)φ(q)(r, k) (3.3)

where, φ(p)(r, k) denotes the pth derivative of the field φ(r, k) with respect to r and p+q ≤ n.

The coefficients Ap,q(r, k) in general depends on the coupling constant µ. Ap,q with p+q ≥ 3

are proportional to µ and vanishes in µ → 0 limit , since the terms φ(p)φ(q) with p + q ≥ 3

appears as an effect of higher derivative terms in the action (3.1). Up to some total

derivative terms, the general action (3.3) can also be written as,

S =
1

16πG5

∫

d4k

(2π)4
dr

n/2
∑

p=0

Ap(r, k)φ(p)(r,−k)φ(p)(r, k), n even

=
1

16πG5

∫

d4k

(2π)4
dr

(n−1)/2
∑

p=0

Ap(r, k)φ(p)(r,−k)φ(p)(r, k), n odd . (3.4)

The equation of motion for the scalar field φ(r, k) is given by,

n/2
∑

p=0

(

− d

dr

)p ∂L({φ(m)})
∂φ(p)(r, k)

= 0, n even

(n−1)/2
∑

p=0

(

− d

dr

)p ∂L({φ(m)})
∂φ(p)(r, k)

= 0, n odd (3.5)

where L({φ(m)}) is given by

L({φ(m)}) =
∑

p

Ap(r, k)φ(p)(r,−k)φ(p)(r, k) . (3.6)

We analyze the general action for the scalar field φ(r, k) and their equation of motion

perturbatively and write an effective action for the field φ(r, k).

The generic form of the equation of motion (varying the general action) upto order µ

is given by,

A0(r, k)φ(r, k) −A′

1(r, k)φ′(r, k) −A1(r, k)φ′′(r, k) = µ F̂({φ(p)}) + O(µ2) (3.7)

where F̂({φ(p)}) is some linear function of double and higher derivatives of φ(r, k), coming

from two or higher derivative terms in action (3.3). The zeroth order (µ → 0) equation of

motion is given by,

A(0)
0 (r, k)φ(r, k) −A

′(0)
1 (r, k)φ′(r, k) −A(0)

1 (r, k)φ′′(r, k) = 0 (3.8)

where, A(0)
p is the value of Ap at µ → 0. From this equation we can write φ′′(r, k) in terms

of φ′(r, k) and φ(r, k) in µ → 0 limit.

φ′′(r, k) =
A(0)

0 (r, k)

A(0)
1 (r, k)

φ(r, k) − A
′(0)
1 (r, k)

A(0)
1 (r, k)

φ′(r, k) . (3.9)

– 6 –
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Then the full equation of motion can be written in the following way,

A(0)
0 (r, k)φ(r, k)−A

′(0)
1 (r, k)φ′(r, k)−A(0)

1 (r, k)φ′′(r, k) = µ F̃(φ(r, k), φ′(r, k), φ′′(r, k), . . .)

+O(µ2) . (3.10)

Since the right hand side of equation (3.10) is proportional to µ, we can replace the φ′′(r, k)

and other higher (greater than 2) derivatives of φ(r, k) by its leading order value (3.9).

Therefore up to order µ the equation of motion for φ is given by,

A(0)
0 (r, k)φ(r, k) −A

′(0)
1 (r, k)φ′(r, k) −A(0)

1 (r, k)φ′′(r, k) = µ F(φ(r, k), φ′(r, k))

+O(µ2)

= µ(F1φ
′(r, k) + F0φ(r, k))

+O(µ2) (3.11)

where F0 and F1 are some function of r. This is the perturbative equation of motion for

the scalar field φ(r, k) obtained from the general action (3.3).

3.2 Strategy to find the effective action

In this subsection we describe the strategy to write an effective action for the field φ(r, k)

which has form (2.8) with different functions. The prescription is following.

(a) We demand the equation of motion for φ(r, k) obtained from the original action and

the effective action are same upto order µ. This will fix the coefficients of φ
′2 and φ2 terms

in effective action.

Let us start with the following form of the effective action.

Seff =
1

16πG5

∫

dωd3~k

(2π)4
dr

[

(A(0)
1 (r, k) + µB1(r, k))φ′(r,−k)φ′(r, k)

+(A(0)
0 (r, k) + µB0(r, k))φ(r, k)φ(r,−k)

]

. (3.12)

The functions B0 and B1 are yet to be determined. We determine these functions by

claiming that the equation of motion for the scalar field φ(r, k) obtained from this effective

action is same as (3.11) up to order µ. The equation of motion for φ(r, k) from the effective

action is given by,

A(0)
0 (r, k)φ(r, k) − A

′(0)
1 (r, k)φ′(r, k) −A(0)

1 (r, k)φ′′(r, k)

= µ

(

B′

1(r, k) − A
′(0)
1 (r, k)

A(0)
1 (r, k)

B1(r, k)

)

φ′(r, k)

+µ

(

B1(r, k)
A(0)

0 (r, k)

A(0)
1 (r, k)

− B0(r, k)

)

φ(r, k) + O(µ2) . (3.13)

Therefore comparing with (3.11) we get,

B′
1(r, k) − A

′(0)
1 (r, k)

A(0)
1 (r, k)

B1(r, k) −F1(r, k) = 0 (3.14)

– 7 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
6

and

B0(r, k) = B1(r, k)
A(0)

0 (r, k)

A(0)
1 (r, k)

−F0(r, k) . (3.15)

The solutions are given by,

B1(r, k) = A(0)
1 (r, k)

∫

dr
F1(r, k)

A(0)
1 (r, k)

+ κA(0)
1 (r, k)

= B̃1(r, k) + κA(0)
1 (r, k) (3.16)

and

B0 = B̃0(r, k) + κA(0)
0 (3.17)

for some constant κ. We need to fix this constant.

(b) Condition (a) can not fix the overall normalization factor of the effective action. In

particular we can multiply it by (1 + µΓ) (for some constant Γ) and still get the same

equation of motion.4 Considering this normalization, the effective action is given by,

Seff =
1 + µ Γ

16πG5

∫

dωd3~k

(2π)4
dr

[

(A(0)
1 (r, k) + µB1(r, k))φ′(r,−k)φ′(r, k)

+(A(0)
0 (r, k) + µB0(r, k))φ(r, k)φ(r,−k)

]

.(3.18)

Substituting the values of B’s (3.16) and (3.17) we get,

Seff = (1 + µ(Γ + κ))S(0) + µ

∫

dr
(

B̃1(r, k)φ′(r,−k)φ′(r, k) + B̃0(r, k)φ(r,−k)φ(r, k)
)

(3.19)

where S(0) is the effective action at µ → 0 limit. This implies that the integration constant

κ can be absorbed in the overall normalization constant Γ. Henceforth we will denote this

combination as Γ.

Our prescription is to take Γ to be zero from the following observation.

The shear viscosity coefficient of boundary fluid is related to the imaginary part of

retarded Green function in low frequency limit. The retarded Green function GR
xy,xy(k)

is defined in the following way. The on-shell action for graviton can be written as a

surface term,

S ∼
∫

d4k

(2π)4
φ0(k)Gxy,xy(k, r)φ0(−k) (3.20)

where φ0(k) is the boundary value of φ(r, k) and GR
xy,xy is given by,

GR
xy,xy(k) = lim

r→0
2Gxy,xy(k, r) (3.21)

4We are thankful to Ashoke Sen for raising this point.
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and shear viscosity coefficient is given by,5

η = lim
ω→0

[

1

ω
ImGR

xy,xy(k)

]

(computed on − shell) . (3.22)

Now it turns out that the imaginary part of this retarded Green function obtained from the

original action and effective action are same upto the normalization constant Γ in presence

of generic higher derivative terms in the bulk action. Therefore it is quite natural to take

Γ to be zero as it ensures that starting from the effective action also one can get same

shear viscosity using Kubo machinery. To show that the above statement is true we do not

need to know the full solution for φ, in other words to find the difference between the two

Green functions one does not need to calculate the Green functions explicitly. Assuming

the following general form of solution for φ

φ ∼ (1 − r2)−iωβ (1 + iωβµξ(r)) (3.23)

it can be shown generically.6 In appendix A we have given the proof.

Because of the canonical form of the effective action, it follows from the argument

in [37] and the statement above, that the shear viscosity coefficient of boundary fluid is

given by the horizon value of the effective coupling obtained from the effective action in

presence of any higher derivative terms in the bulk action. We discuss elaborately on this

point in section (4).

(c) After getting the effective action for φ(r, k), the effective coupling is given by,

Keff(r) =
1

16πG5

A(0)
1 (r, k) + µB1(r, k)√−ggrr

(3.24)

where grr is the ’rr’ component of the inverse perturbed metric and
√−g is the determinant

of the perturbed metric. Hence the shear viscosity coefficient is given by,

η = r
− 3

2
0 (−2Keff(r = r0)) (3.25)

where r0 is the corrected horizon radius.

To summaries, we have obtained a well defined procedure to find the correction (up

to order µ) to the coefficient of shear viscosity of the boundary fluid in presence of general

higher derivative terms in the action.

4 Flow from boundary to horizon

Following [37], let us define the following linear response function

χ̄(r, k) =
Π(r, k)

iωφ(r, k)
(4.1)

5To calculate this number one has to know the exact solution, i.e., the form of ξ and the value of β

in (3.23).
6In fact one advantage to calculate the boundary term from effective action is that we do not need to

consider the Gibbons-Hawking boundary terms (see appendix A).
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where Π(r, k) is conjugate momentum of the scalar field φ (with respect to a foliation in

the r direction),

Π(r, k) =
(

A(0)
1 (r, k) + µB1(r, k)

)

φ′(r,−k)

= K̃eff(r)

√

−g(0)g(0)rr

∂rφ (4.2)

where K̃eff(r) = 16πG5Keff(r). Now we will show, using the equation of motion, that the

function Π(r, k) and the combination ωφ(r, k) is independent of the radial coordinate r in

k → 0 limit. The equation of motion is given by,

d

dr

[

(

A(0)
1 (r, k) + µB1(r, k)

)

φ′(r, k)

]

=
(

A(0)
0 (r, k) + µB0(r, k)

)

φ(r, k)

d

dr

[

Π(r, k)

]

=
(

A(0)
0 (r, k) + µB0(r, k)

)

φ(r, k) . (4.3)

Since A(0)
0 ∼ ω2, therefore it follows from (4.3) and (4.2) that, in µ → 0 limit Π(r, k) and

ωφ(r, k) are independent of r. But this is true even in µ 6= 0 case. To understand this

we note that, function A0 in (3.4) is proportional to ω2 in general.7 Therefore it follows

from (3.9), (3.11) and (3.15) that B0 is also proportional to ω2. Hence, in presence of

higher derivative terms also it follows from (4.2) and (4.3) that the function Π(r, k) and

ωφ(r, k) are independent of radial direction r in low frequency limit.

Therefore this response function calculated at the asymptotic boundary and at the

horizon gives the same result and is equal to the shear viscosity coefficient. One can

calculate the function χ̃ and it turns out that,

χ̄(r = 0, k → 0) =
ImGReff

xy,xy

iω
,

χ̄(r = r0, k → 0) = −r
−3/2
0

8πG5

A(0)
1 (r, k) + µB1(r, k)√−ggrr

∣

∣

∣

∣

r0

= r
− 3

2
0 (−2Keff(r0)) . (4.4)

Thus, shear viscosity coefficient of boundary fluid is related to horizon value of graviton’s

effective coupling obtained from the effective action.

5 Membrane fluid in higher derivative gravity

The UV/IR connection tells us that the boundary field theory physics in low frequency

limit should be governed by the near horizon geometry of its gravity dual. In [37], the

authors have established a connection between horizon membrane fluid and boundary fluid

in linear response approximation. They considered a mass less scalar field (with action

given in (2.8)) outside the horizon and studied the response of the membrane fluid to this

bulk scalar field. They defined a membrane charge Πmb which is equal to the conjugate

7In general when we write action (3.4) action (3.3) we get some terms like ω2φ2 + Z(r)φ2. The function

Z(r) is zero when background equation of motion is satisfied. We have explicitly checked this for two, four

and eight derivative case.
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momentum of the scalar field φ (with respect to a foliation in the r direction) at the

horizon. Imposing regularity condition on the scalar field at the horizon they interpreted

the membrane charge Πmb as a response of the horizon fluid to the scalar field. Considering

the scalar field φ to be bulk graviton excitation (hy
x), Πmb gives the shear viscosity of the

membrane (horizon) fluid which is also equal to horizon value of the effective coupling of

graviton. In this way, they proved that the shear viscosity of boundary fluid is related to

that of membrane fluid.

In higher derivative gravity, since the canonical form of the action (2.8) breaks down, it

is not very obvious how to define the membrane charge Πmb. Instead of the original action if

we consider the effective action (3.12) for graviton then it is possible to write the membrane

action perturbatively and define the membrane charge (Πmb) in higher derivative gravity.

As if the membrane fluid is sensitive to the effective action Seff in higher derivative gravity.

Following [37] we can write the membrane action and charge in the following way (in

momentum space)

Smb =

∫

Σ

d4k

(2π)4
√
−σ

(

Π(r0, k)√
−σ

φ(r0,−k)

)

(5.1)

where σµν is the induced metric on the membrane and Π(r, k) is given by (4.2) and the

membrane charge is given by,

Πmb =
Π(r0, k)√−σ

= −K̃eff(r0)

√

g(0)rr

∂rφ(r, k)
∣

∣

r0
. (5.2)

Imposing the in-falling wave boundary condition on φ, it can be shown that the membrane

charge Πmb is the response of the horizon fluid to the bulk graviton excitation and the

membrane fluid transport coefficient is given by,

ηmb = K̃eff(r0) . (5.3)

Hence, we see that even in higher derivative gravity the shear viscosity coefficient of

boundary fluid is captured by the membrane fluid.

6 Four derivative lagrangian

In this section we apply our effective action approach to calculate the correction to the shear

viscosity in presence of general four derivative terms in the action. The four derivative bulk

action we consider is of the following form

S =
1

16πG5

∫

d5x
[

R + 12 + µ
(

c1R
2 + c2RabR

ab + c3RabcdR
abcd
)]

(6.1)

with constant c1, c2 and c3. The background metric is given by,

ds2 = −f(r)

r
dt2 +

dr2

4r2f(r)
+

1

r
d~x2 (6.2)

where,

f(r) = 1 − r2 +
µ

3
(4(5c1 + c2) + 2c3) + 2µc3r

4 . (6.3)
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The position of the horizon is given by,

f(r0) = 0 (6.4)

which implies that,

r0 = 1 +
2

3
(5c1 + c2 + 2c3)µ + O(µ2) . (6.5)

The temperature of this black hole is given by,

T =
1

π
+

(5c1 + c2 − 7c3)µ

3π
+ O

(

µ2
)

. (6.6)

In this coordinate frame the boundary metric is given by,

ds2
4 =

(

−f(0)dt2 + d~x2
)

(6.7)

which is not Minkowskian. Therefore we rescale our time coordinate to make the boundary

metric Minkowskian. We replace,

t → t
√

f(0)
(6.8)

in the metric (6.2). The rescaled metric is,

ds2 = − f(r)

f(0)r
dt2 +

dr2

4r2f(r)
+

1

r
d~x2 . (6.9)

This is our background metric and we consider fluctuation around this.

6.1 The general action

In this theory, the general action for the scalar field φ(r, k) is given by,

S =
1

16πG5

∫

d4k

(2π)4
dr

[

AGB
1 (r, k)φ(r, k)φ(r,−k) + AGB

2 (r, k)φ′(r, k)φ′(r,−k) (6.10)

+AGB
3 (r, k)φ′′(r, k)φ′′(r,−k) + AGB

4 (r, k)φ(r, k)φ′(r,−k)

+AGB
5 (r, k)φ(r, k)φ′′(r,−k) + AGB

6 (r, k)φ′(r, k)φ′′(r,−k)

]

where the expressions for AGB
i s are given in appendix B. Up to some total derivative terms

this action can be written as,

S =
1

16πG5

∫

d4k

(2π)4
dr

[

AGB
0 φ(r, k)φ(r,−k) (6.11)

+AGB
1 φ′(r, k)φ′(r,−k) + AGB

2 φ′′(r, k)φ′′(r,−k)

]

where,

AGB
0 = AGB

1 (r, k) − A
′GB
4 (r, k)

2
+

A
′′GB
5 (r, k)

2

AGB
1 = AGB

2 (r, k) − AGB
5 (r, k) − A

′GB
6 (r, k)

2

AGB
2 = AGB

3 (r, k) . (6.12)
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6.2 The effective action and shear viscosity

Following the general discussion of section (3) we write the effective action for the

scalar field,

SGB
eff =

(1 + Γµ)

16πG5

∫

d4k

(2π)4

[

(A(0)
1 (r, k) + µBGB

1 (r, k))φ′(r,−k)φ′(r, k)

+(A(0)
0 (r, k) + µBGB

0 (r, k))φ(r, k)φ(r,−k)

]

.

To evaluate the functions BGB
1 and BGB

0 and to fix the normalization constant Γ, we follow

the strategy given in section (3.2). Comparing the equation of motion for φ(r, k) from two

actions we get the function BGB
1 and BGB

0 of the following form,

BGB
0 =

ω2

12r2(1 − r2)2
(

10(11r2 − 13)c1 + (22r2 − 26)c2 + (11 − 25r2 + 6r4)c3

)

BGB
1 =

1

3r

(

(110 − 130r2)c1 + (22 − 26r2)c2 − (13 − 23r2 + 18r4)c3

)

. (6.13)

The normalization constant Γ = 0 (appendix A).

Now we can calculate the effective coupling using the formula (3.24). It turns out

to be,

Keff(r) =
1

16πG5

(

−1

2
+
(

4(5c1 + c2) − 2(1 − r2)c3

)

µ

)

. (6.14)

Therefore the shear viscosity is given by,

η =
1

r
3/2
0

(−2Keff(r0))

=
1

16πG5

1

r
3/2
0

(1 − 8(5c1 + c2)µ)

=
1

16πG5
(1 − 9µ (5c1 + c2) − 2µ c3) . (6.15)

This result is in agreement with [33, 34, 41].

7 String theory correction to shear viscosity

In this section we apply the effective action approach for eight derivative terms in the

Lagrangian. We consider the well known Weyl4 term. This term appears in type II string

theory. The five dimensional bulk action is given by,

S =
1

16πG5

∫

d5x
√−g

(

R + 12 + µW (4)
)

(7.1)

where,

W (4) = ChmnkCpmnqC
rsp

h Cq
rsk +

1

2
ChkmnCpqmnC rsp

h Cq
rsk (7.2)
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and the weyl tensors Cabcd are given by,

Cabcd = Rabcd +
1

3
(gadRcb + gbcRad − gacRdb − gbdRca) +

1

12
(gacgbd − gadgcb)R . (7.3)

The background metric is given by [42, 43],

ds2 = −(1 − r2)

r

(

1 + 45µr6 − 75µr4 − 75µr2
)

dt2

+
1

4(1 − r2)r2

(

1 − 285µr6 + 75µr4 + 75µr2
)

dr2 +
1

r
d~x2 . (7.4)

The temperature of this black hole is given by,

T =
1

π
(1 + 15µ) . (7.5)

The horizon is located at r0 = 1.

7.1 The general action

Putting the perturbed metric in (7.1) we get the general action for the scalar field φ(r, k),

S =
1

16πG5

∫

d4k

(2π)4
dr

[

AW
1 (r, k)φ(r, k)φ(r,−k) + AW

2 (r, k)φ′(r, k)φ′(r,−k) (7.6)

+AW
3 (r, k)φ′′(r, k)φ′′(r,−k) + AW

4 (r, k)φ(r, k)φ′(r,−k)

+AW
5 (r, k)φ(r, k)φ′′(r,−k) + AW

6 (r, k)φ′(r, k)φ′′(r,−k)

]

.

The coefficients AW
i s are given in appendix (C). Like four derivative case, up to some total

derivative terms this action can be written as,

S =
1

16πG5

∫

d4k

(2π)4
dr

[

AW
0 φ(r, k)φ(r,−k)+AW

1 φ′(r, k)φ′(r,−k)+AW
2 φ′′(r, k)φ′′(r,−k)

]

(7.7)

where,

AW
0 = AW

1 (r, k) − A
′W
4 (r, k)

2
+

A
′′W
5 (r, k)

2

AW
1 = AW

2 (r, k) − AW
5 (r, k) − A

′W
6 (r, k)

2

AW
2 = AW

3 (r, k) . (7.8)

7.2 The effective action and shear viscosity

We write the effective action for the scalar field in the following way,

SW
eff =

(1 + Γµ)

16πG5

∫

d4k

(2π)4

[

(A(0)
1 (r, k) + µBW

1 (r, k))φ′(r,−k)φ′(r, k) (7.9)

+(A(0)
0 (r, k) + µBW

0 (r, k))φ(r, k)φ(r,−k)

]

.
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The functions BW
0 and BW

1 are given by,

BW
0 (r, k) = −ω2

(

663r6 − 573r4 + 75r2
)

4r2 (r2 − 1)
(7.10)

BW
1 (r, k) =

(

r2 − 1
) (

129r6 + 141r4 − 75r2
)

r
. (7.11)

The normalization constant Γ = 0 (appendix A).

The effective coupling constant is given by (3.24),

Keff(r) =
1

16πG5

A(0)
1 (r, k) + µ BW

1 (r, k)√−ggrr

=
1

16πG5

(

−1

2

(

1 + 36µ r4(6 − r2)
)

)

. (7.12)

Therefore the shear viscosity is given by,

η = r
− 3

2
0 (−2Keff(r0))

=
1

16πG5
(1 + 180 µ) , (r0 = 1) (7.13)

and shear viscosity to entropy density ratio

η

s
=

1

4π
(1 + 120 µ) (7.14)

where entropy density s is given by [42, 43],

s =
1

4G5
(1 + 60 µ) . (7.15)

These results agree with [40].8

8 Discussion

We have found a procedure to construct an effective action for the transverse graviton

in canonical form in presence of any higher derivative terms in bulk and showed that

the horizon value of the effective coupling obtained from the effective action gives the

shear viscosity coefficient of boundary fluid. Our results are valid upto first order in µ.

We discussed two non trivial examples to check the method. We have considered four

derivative and eight derivative (Weyl4) Lagrangian and calculated the correction to the

shear viscosity using our method. We found complete agreement between our result and

the results obtained using other methods.

Since the equation of motion for scalar field φ(r, k) obtained from effective and original

actions are same, these two actions should be related by some field re-definition. If one

finds such field re-definition then the normalization of the effective action will be fixed

automatically.9

8In fact, in [32] the result for η/s was not correct. Later the author(s) corrected their results in [40].
9We are thankful to Ashoke Sen for discussion on thins point.
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In [35] the authors have proposed a formula for shear viscosity for generalized higher

derivative gravity in terms of some geometric quantity evaluated at the event horizon (like

Wald’s formula for entropy). Though their proposal gives correct results for Einstein-

Hilbert and Gauss-Bonnet action but unfortunately we are unable to get the correct

result for Weyl4 term. We find the shear viscosity coefficient for Weyl4 term (using

their proposal)

η =
1

16πG5
(1 + 20µ) (8.1)

which implies,
η

s
=

1

4π
(1 − 40µ) . (8.2)

These issues are under investigation [44].

In this paper we have concentrated on a particular transport coefficient, namely the

shear viscosity coefficient. But the other transport coefficients like electrical and thermal

conductivity of the boundary fluid can also be captured in terms of the membrane fluid.

It would also be interesting to study these other transport coefficients in the context of

higher derivative gravity.
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A Fixing the normalization constant

In this appendix we fix the normalization constant Γ. We consider a general class of action

for φ which appears when the higher derivative terms are made of different contraction

of Ricci tensor, Riemann tensor, Weyl tensor, Ricci scalar etc. or their different powers.

Since, all these tensors involve two derivatives of metric they can only have terms like

∂a∂bΦ(r, x) and its lower derivatives. Therefor the most generic quadratic (in Φ(r, x), in

linear response theory) action for this kind of higher derivative gravity has the following

form (in momentum space)10

S =
1

16πG5

∫

d4k

(2π)4
dr

[

a1(r)φ(r)2 + a2(r)φ′(r)2 + a4(r)φ(r)φ′(r) (A.1)

+µ a6(r)φ′′(r)φ′(r) + µ a3(r)φ′′(r)2 + a5(r)φ(r)φ′′(r)

]

10In all the expressions we have omitted k dependence of φ.
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where,

a1(r) =
−8r2 + ω2r + 8

4r3 − 4r5
+ µ f2(r)

a2(r) = −3r +
3

r
+ µ h2(r)

a4(r) = − 6

r2
− 2 + µ g2(r)

a5(r) = −4r +
4

r
+ µ j2(r) (A.2)

and a3(r), a6(r), j2(r), g2(r), h2(r) and f2(r) depends on higher derivative terms in the

action. Now let us write the effective Lagrangian as follows,

Seff =
1 + µΓ

16πG5

∫

d4k

(2π)4
dr

[

4r
(

r2 − 1
)2

φ′(r)2 − ω2φ(r)2

4r2 (r2 − 1)
+ µ

(

b2(r)φ(r)2+b1(r)φ′(r)2
)]

.

(A.3)

From condition (a) of section (3) the solutions for b1 and b2 are given by,

b1(r) =
1

2r (r2 − 1)2
(
(

−4r3 − 12r + ω2
)

a3(r)

+
(

r2 − 1
)

(2κr4 − a6′(r)r3 − 4κr2 + 2a3′(r)r2

+2
(

r2 − 1
)

h2(r)r − 2
(

r2 − 1
)

j2(r)r + a6′(r)r + 2κ + 2a3′(r))) (A.4)

b2(r) = − 1

16r2 (r2 − 1)4
(
(

ω4 + 144r3ω2
)

a3(r)

+4
(

r2 − 1
)

(−4r2f2(r)
(

r2 − 1
)3

+ (2r2g2′(r)
(

r2 − 1
)2

+
(

ω2κ − 2r2
(

r2 − 1
)

j2′′(r)
) (

r2 − 1
)

+rω2a3′′(r))
(

r2 − 1
)

+
(

1 − 11r2
)

ω2a3′(r))) . (A.5)

The boundary term coming from the original action (after adding Gibbons-Hawking bound-

ary terms) are given by,

SB =
1

16πG5

∫

d4k

(2π)4

[

− φ(r)2

r2
+ φ(r)2 + rφ′(r)φ(r) − φ′(r)φ(r)

r

+µ

(

1

2
g2(r)φ(r)2 − 1

2
j2′(r)φ(r)2

+h2(r)φ′(r)φ(r) − j2(r)φ′(r)φ(r) − 1

2
a6′(r)φ′(r)φ(r)

+
a3′(r)

(

φ(r)ω2 + 4
(

r4 − 1
)

φ′(r)
)

φ(r)

4r (r2 − 1)2

−a3(r)
(

6rφ(r)ω2 +
(

r2 − 1
) (

8r3 + 24r − ω2
)

φ′(r)
)

φ(r)

4r (r2 − 1)3

−a3(r)φ′(r)
(

φ(r)ω2 + 4
(

r4 − 1
)

φ′(r)
)

4r (r2 − 1)2

+a3(r)φ′(r)

(

− φ(r)ω2

2r (r2 − 1)2
−
(

r4 − 1
)

φ′(r)

r (r2 − 1)2

))]

. (A.6)
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And the boundary terms coming from the effective action are given by,

SB
eff =

1

16πG5

∫

d4k

(2π)4

[(

r − 1

r

)

φ(r)φ′(r) (A.7)

+
µ

2r (r2 − 1)2

(

φ(r)(2Γ
(

r2 − 1
)3

+ (−a6′(r)r3

+2a3′(r)r2 + 2
(

r2 − 1
)

h2(r)r − 2
(

r2 − 1
)

j2(r)r

+a6′(r)r + 2a3′(r))
(

r2 − 1
)

+
(

−4r3 − 12r + ω2
)

a3(r))φ′(r)

)]

.

Let the form of the solution of φ is given by,

(

1 − r2
)iβω

(1 + iβωµF (r)) (A.8)

with

F (0) = 0. (A.9)

The imaginary part of the retarded Green function for original action is given by,

1

ω
Im
[

GR(original)

xy,xy

]

= lim
r→0

[

− 2β +
1

r (r2 − 1)3

(

µβ(4
(

r2 + 3
)

a3(r)r2 + (r2 − 1)

(F ′(r)r6 + a6′(r)r4 − 3F ′(r)r4 − 2a3′(r)r3 − 2
(

r2−1
)

h2(r)r2

+2
(

r2−1
)

j2(r)r2−a6′(r)r2+3F ′(r)r2−2a3′(r)r−F ′(r)))

)]

(A.10)

and imaginary part of the retarded Green function for effective action is given by

1

ω
Im
[

GR(effective)

xy,xy

]

= lim
r→0

[

− 2β − µ

(

1

(r2 − 1)3

(

(

r2 − 1
)

(2Γr4 − a6′(r)r3 − 4Γr2 + 2a3′(r)r2 + 2
(

r2 − 1
)

h2(r)r

−2
(

r2 − 1
)

j2(r)r + a6′(r)r + 2Γ + 2a3′(r)) − 4r
(

r2+3
)

a3(r)

)

−rF ′(r) +
F ′(r)

r

)

β

]

. (A.11)

Therefore, in low frequency limit the difference between the imaginary part of retarded

Green function coming from this two boundary terms are given by ,

lim
ω→0

1

ω
Im
[

GR(original)

xy,xy

]

− 1

ω
Im
[

GR(effective)

xy,xy

]

= 2µ β Γ . (A.12)

Therefore for this general class of theory,

Γ = 0 . (A.13)

The other kind of higher derivative theory one can consider is covariant derivatives

acting on curvature tensors. In that case one can have a more general action like (3.3). For
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this kind of action the boundary terms one gets are of the form φ(n)φ(p) (here φ(n) means

n-th derivative of φ with respect to r). Using the form of φ given in (3.23) it can be shown

that except φ(n)φ kind of terms, other boundary terms do not contribute in low frequency

limit. For example, if we consider Cnφ(n)2 term in the original action, the the relevant

boundary term which will contribute in low frequency limit is (−1)(n+1)(Cnφ(n))(n−1)φ.

One can check that though we need to add Gibbons-Hawking terms to make the variation

of the action well defined but most of them are zero in low frequency limit. We have

checked it for few nontrivial terms like, φ(3)2 and φ(4)2 and Γ turns out to be zero. But we

expect it is true in general.

B Expressions for A
GB

AGB
1 (r, k) =

8r2− ω2r− 8

4r3 (r2− 1)
− 1

(12(r3(r2− 1)2))
((10c1(88r

4− 11ω2r3− 176r2 + 13ω2r + 88)

+c3(144r
8− 288r6 + 66ω2r5 + 232r4 + 25ω2r3− 4(3ω4 + 44)r2 + 13ω2r + 88)

+c2(176r
4− 22ω2r3− (3ω4 + 352)r2 + 26ω2r + 176))µ) + O(µ2)

AGB
2 (r, k) =−3(r2− 1)

r

+
(10c1(13r

2−11)+2c2(2r
4+17r2−9)+c3(34r

4+9r2−8ω2r−3))µ

r
+ O(µ2)

AGB
3 (r, k) = 4(c2 + 4c3)r

(

r2 − 1
)2

µ + O
(

µ2
)

AGB
4 (r, k) = −2(r2 + 3)

r2

+
1

3r2(r2−1)
(2(10c1(13r

4+20r2−33)+c2(26r
4+3ω2r3+40r2+3ω2r−66)

+c3(90r
6 − 89r4 + 30ω2r3 + 32r2 + 6ω2r − 33))µ) + O

(

µ2
)

AGB
5 (r, k) = −4(r2 − 1)

r

+
2(20c1(13r

2−11)+2c3(18r
4+r2−11)+c2(52r

2+3ω2r−44))µ

3r
+ O

(

µ2
)

AGB
6 (r, k) = 8

(

r2 − 1
) (

c2r
2 + 4c3r

2 + c2

)

µ + O
(

µ2
)

. (B.1)

C Expressions for A
W

AW
1 =

8r2−ω2r−8

4r3 (r2−1)

+

(

−360r9−240r7+129ω2r6+1560r5−300ω2r4+8
(

ω4−120
)

r3+75ω2
)

γ

4 (r2−1)2
+O

(

µ2
)

AW
2 =−3

(

r2−1
)

r
+r
(

−419r6+668r4−24ω2r3+8r2−225
)

µ+O
(

µ2
)

AW
3 = 32r5

(

r2−1
)2

µ+O
(

µ2
)
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AW
4 =−2

(

r2+3
)

r2
− 2

(

2045r8−4185r6−26ω2r5+2140r4−2ω2r3+75r2−75
)

µ

r2−1
+O

(

µ2
)

AW
5 =−4

(

r2−1
)

r
−4
(

r
(

145r6−220r4+2ω2r3+75
))

µ+O
(

µ2
)

AW
6 = 32r4

(

2r4−3r2+1
)

µ+O
(

µ2
)

. (C.2)
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